RTE

A COMPUTER CODE FOR THREE-DIMENSIONAL <u>ROCKET THERMAL</u> <u>EVALUATION</u>

Mohammad H. Naraghi Department of Mechanical Engineering Manhattan College Riverdale NY 10471

Regeneratively Cooled Rocket Engines

Modes of Heat Transfer Incorporated in RTE

- Convection and radiation from combustion gases (hot-gases).
- Three-dimensional conduction within the wall.
- Convection to the coolant.
- Conjugating all these mode of heat transfer.

Typical Nozzle Broken into a Number of Stations

Convection from Hot-Gases

- RTE uses the Chemical Equilibrium program by Gordon & McBride for hot-gas side thermodynamics and transport properties.
- Uses adiabatic wall temperature (enthalpy) along with convective heat transfer correlation for calculating heat flux from hot-gases.
- Can be linked to TDK's Boundary Layer Modules for hot-gas-side heat flux calculations.
- Heat fluxes can be input using a matrix of heat fluxes.

Hot-Gas-Side Heat flux Using Adiabatic Wall Temperature (Enthalpy)

The reference enthalpy of the gas side, is given by (Eckert):

$$i_{GX_n} = 0.5(i_{GW_n} + i_{GS_n}) + 0.180(i_{GO_n} - i_{GS_n})$$

The adiabatic wall enthalpy (Bartz and Eckert)

$$i_{GAW_n} = i_{GS_n} + (\Pr_{GX_n})^{1/3} (i_{GO_n} - i_{GS_n})$$

Hot-Gas Side Convective Heat Transfer

$$q_n = h_{G_n} (T_{GAW_n} - T_{GW_n})$$

Or

$$q_n = \frac{h_{G_n}}{C_{p_{GX_n}}} (i_{GAW_n} - i_{GW_n})$$

Hot-Gas Side Convective Heat Transfer

Inputting Hot-Gas-Side Heat Fluxes Using a Matrix of Fluxes

- Hot-gas-side heat fluxes can be input using a matrix of heat fluxes.
- Rows of this matrix represent axial positions and its columns represent wall temperatures.
- This option can be used if other programs are available for hot-gas-side heat flux calculations.

Radiation Heat Transfer from Hot-Gases

Radiation heat transfer is calculated using the Discrete Exchange Factor (DEF) method

$$q''_{r} = \left(\sum_{l=1}^{m+2} w_{s_{l}} E_{s_{l}} \overline{DS_{l}S_{n}} + \sum_{l=1}^{m} w_{g_{l}} E_{g_{l}} \overline{DG_{l}S_{n}} - E_{s_{n}}\right)$$
$$E_{s_{n}} = es T_{s_{n}}^{4} \qquad E_{g_{l}} = 4K_{t_{l}} (1 - w_{0}) sp r^{2} T_{g_{l}}^{4}$$

Cross-Section at Each Station

3-D Finite Difference Method for Wall Heat Conduction

Each node at this station (station n) is linked to the two corresponding nodes at stations before (n-1) and after (n+1) for three dimensional heat conduction analysis.

3-D Finite Difference Model for Wall Heat Conduction

$$T_{i,j,n}^{l} = \frac{T_{i+1,j,n}^{l-1} \,/\, R_1 + T_{i,j-1,n}^{l-1} \,/\, R_2 + T_{i-1,j,n}^{l-1} \,/\, R_3 + T_{i,j+1,n}^{l-1} \,/\, R_4 + T_{i,j,n+1} \,/\, R_5 + T_{i,j,n-1} \,/\, R_6}{1 /\, R_1 + 1 /\, R_2 + 1 /\, R_3 + 1 /\, R_4 + 1 /\, R_5 + 1 /\, R_6}$$

3-D Finite Difference Method for Wall Heat Conduction

 $T_{i,j,n}^{l} = [T_{i+1,j,n}^{l-1} / R_1 + T_{i,j-1,n}^{l-1} / R_2 + T_{i-1,j,n}^{l-1} / R_3 + T_{i,j+1,n}^{l-1} / R_4 + T_{i,j,n+1} / R_5 + T_{i,j,n-1} / R_6 + Q_c + Q_r] / (1 / R_1 + 1 / R_2 + 1 / R_3 + 1 / R_4 + 1 / R_5 + 1 / R_6)$

$$Q_{r} = \frac{\Delta f(\Delta S_{i,j}^{n-1,n} + \Delta S_{i,j}^{n,n+1}) \sin b_{n}}{4p} \left(\sum_{l=1}^{m+2} w_{s_{l}} E_{s_{l}} \overline{DS_{l}S_{n}} + \sum_{l=1}^{m} w_{g_{l}} E_{g_{l}} \overline{DG_{l}S_{n}} - E_{s_{n}} \right)$$

Wall Materials Incorporated in RTE

- Copper
- Nickel
- Soot
- NARloy-Z
- Columbium
- Zirconia

- SS-347
- Amzirc
- Platinum
- Glidcop
- Inconel718
- Nicraly

Coolant Flow Convection

- GASP (Gas Properties) and WASP (Water and Steam Properties) are used for evaluating coolant properties.
- A one-dimensional approach is used for coolant heat transfer and pressure drop calculations.

Convection Options

- Surface roughness
- Entrance effect
- Curvature effect
- Swiler option for enhancing coolant convection
- Cooling channel contraction and expansion
- Pass-and-a-half cooling channel option
- Pressure drop
- Blocked channel option to study a worst case scenario

Cooling Channel Heat Transfer Coefficient

$$\frac{Nu}{Nu_r} = C_{C_n} Re^{0.8} Pr^{0.4}$$

Where

$$Nu_r = y^{-0.55}$$
 $y = 1 + g(T_W - T_S)$

$$\boldsymbol{g} = \left| \frac{1}{\boldsymbol{r}} \frac{\partial \boldsymbol{r}}{\partial T} \right|_{P} = \frac{1}{\boldsymbol{r}} \frac{\left(\frac{\partial P}{\partial T} \right)_{r}}{\left(\frac{\partial P}{\partial \boldsymbol{r}} \right)_{T}}$$

Heat Transfer Coefficient for Oxygen

$$Nu = C_{C_n} Re_{CS} Pr_{CS}^{0.4} \left(\frac{\overline{c}_p}{c_{p_{CS}}}\right) \left(\frac{P_{Cri}}{P_{CS}}\right)^{0.2} \sqrt{\left(\frac{k_{CS}}{k_{CW}}\right) \left(\frac{r_{CW}}{r_{CS}}\right)}$$

Where

$$P_{Cri} = 731.4$$
 psia

$$\overline{c}_p = \frac{i_{CW} - i_{CS}}{T_{CW} - T_{CS}}$$

Entrance Effect Correlation Options

$$\boldsymbol{f}_{Ent.} = \left(\frac{T_W}{T_b}\right)^{\left[1.59 / \left(\sum_{i=1}^n \Delta S_{i,i+1} / d_{C_n}\right)\right]}$$

Curvature Effect

where r_{C_n} is the hydraulic radius of cooling channel, R_{Cur_n} is the radius of curvature, the sign (+) denotes the concave curvature and the sign (-) denotes the convex one

Swilers for Enhancing Heat Transfer

$$\frac{Gr}{Re^2} = \frac{2d_{C_n} \boldsymbol{b}_T \left| T_{C_W} - T_{CS} \right| \tan \boldsymbol{a}}{d_i}$$

$$\boldsymbol{f}_{\text{swiler}} = F\left(1 + 0.25\sqrt{\frac{Gr}{Re}}\right)$$

$$F = 1 + 0.004872 \frac{\tan^2 a}{d_i (1 + \tan^2 a)}$$

 $n = 0.68 Pr^{0.215}$

$$\frac{1}{\sqrt{f}} = -2.0\log\left[\frac{e}{3.7065D} - \frac{5.0452}{\operatorname{Re}_{CX_{Avg.}}}\log\left(\frac{1}{2..8257}\left(\frac{e}{D}\right)^{1.1098} + \frac{5.8506}{\operatorname{Re}_{CX_{Avg.}}}\right)\right]$$

Pressure Drop

$$P_{CS_{n}} = P_{CS_{n-1}} - \left[\left(\Delta P_{CS_{n-1,n}} \right)_{f} + \left(\Delta P_{CS_{n-1,n}} \right)_{M} \right]$$

$$\left(\Delta P_{CS_{n-1,n}}\right)_{f} = \frac{f_{n}}{8g_{c}} \left(\frac{\mathbf{r}_{CS_{n}} + \mathbf{r}_{CS_{n-1}}}{d_{C_{n}} + d_{C_{n-1}}}\right) \left(V_{CS_{n}} + V_{CS_{n-1}}\right)^{2} \Delta S_{n-1,n}$$

$$\left(\Delta P_{CS_{n-1,n}}\right)_{M} = \left(\frac{2}{\left(A_{C}N\right)_{n-1} + \left(A_{C}N\right)_{n}}\right) \frac{W_{C}^{2}}{g_{c}} \left(\frac{1}{\left(r_{CS}A_{C}N\right)_{n}} - \frac{1}{\left(r_{CS}A_{C}N\right)_{n-1}}\right)$$

Typical RTE Results

- Space Shuttle Main Engine (SSME)
- Low-pressure chamber
- High pressure chamber with 200 cooling channels
- High pressure chamber with 150 cooling channels

Results for SSME

Chamber pressure O/F**Contraction ratio Expansion ratio Throat diameter Propellant Coolant Coolant inlet temperature Coolant inlet stagnation pressure Total coolant flow rate Approximate throat heat flux** Number of cooling channels **Throat region channel aspect ratio** **3027 psia** 6.05 2.66 4.08 **10.88 inches** GH2-LO2 LH295.03R **6084** psia 29.06 lb/sec 80 Btu/in²-sec **430** 5

Wall Temperature Distribution for SSME

Axial Position (inches)

Temperature Profile (X=-1.4 Inches)

 $T_{max} = 1460 R$

Coolant Pressure

Results for Low Pressure Chamber

Chamber pressure O/F**Contraction ratio Expansion ratio Throat diameter Propellant** Coolant **Coolant inlet temperature Coolant inlet stagnation pressure Total coolant flow rate Approximate throat heat flux** Number of cooling channels **Throat region channel aspect ratio Channel width step changes at**

450 psia 5.8 3.07 5.3 8.0 inches GH2-LO2 LH2**50R 700 psia** 15 lb/sec **19 Btu/in²-sec** 240 5 **X=3.039** inches **X=-4.158** inches

Low Pressure Chamber (unblocked)

Т

X=-0.618 inch

Temperature Distribution

Temperature Profile

Temperature Profile

Results for High Pressure Chamber

Chamber pressure	2000 psia
O/F	5.8
Contraction ratio	3.41
Expansion ratio	6.63
Throat diameter	2.6 inches
Propellant	GH2-LO2
Coolant	LH2
Total coolant flow rate	6.45 lb/sec
Coolant inlet temperature	50 R
Coolant inlet stagnation pressure	3200 psia
Approximate throat heat flux	77 Btu/in ² -sec
Number of cooling channels	200
Throat region channel aspect ratio	5-7.8
Channel width step changes at	X=0.947 inches
	X=-3.906 inches

High Pressure Chamber (unblocked)

High pressure chamber 200 cooling channels

Temperature Distribution High Pressure, 200 Channels

Axial Position (inches)

Temperature Profile

Temperature Profile

High pressure chamber 200 cooling channels Т X=-9.38 inch $\dot{m}_{c}=0.024$ lb/sec Closed Open 25% reduction in coolant flow rate $T_{max} = 1580R$ $T_c = 6\overline{45R}$

Results for High Pressure Chamber

Chamber pressure	2000 psia
O/F	5.8
Contraction ratio	3.41
Expansion ratio	6.63
Throat diameter	2.6 inches
Propellant	GH2-LO2
Coolant	LH2
Total coolant flow rate	6.45 lb/sec
Coolant inlet temperature	50 R
Coolant inlet stagnation pressure	2900 psia
Approximate throat heat flux	75 Btu/in ² -sec
Number of cooling channels	150
Throat region channel aspect ratio	5-7.8
Channel width step changes at	X=0.947 inches
	X=-3.906 inches

High Pressure Chamber (unblocked)

High pressure chamber 150 cooling channels

$$X=-0.1$$
 inch

$$T_c = 119R$$

 $\dot{m}_c = 0.043 \text{ lb/sec}$
 $T_{max} = 1211R$

Temperature Distribution High Pressure, 200 Channels

Temperature Profile

Temperature Profile

Future Work for Expanding Capabilities of RTE

- Modeling hypersonic air breathing engines.
- Incorporating other cooling channel shapes.
- Developing a CFD model for coolant flow analysis.
- Converting the code to a design tool.

Hypersonic Engines (Scramjets)

A Typical Cooling Panel for Scramjet

Combustor and Nozzle Flow Passage for Hypersonic Engines

Mostly rectangular cross-section

Some axisymmetric passages

Different Cooling Channel Shapes

Cooling channel with transpiration injection

Increased hot-gas side surface area

Design for Inlet Pressure

Design for Aspect Ratio

Breaks the cooling channel width interval into a number of increments (i.e. $w_1, w_2, w_3, \dots, w_n$, where w_1 is the minimum width and w_n is the maximum width). For each width value a procedure similar to that shown before will be used to determine the corresponding cooling channel height that yields the desired surface temperature at the throat. The resulting output will be n possible solutions, (w_1,h_1) , (w_2,h_2) , ... (w_n,h_n) , from which the most feasible design from manufacturing point can be selected.

To obtain a copy of RTE contact Dr. Mohammad Naraghi

Email: <u>mnaraghi@manhattan.edu</u> Tel: 718-862-7367 Fax: 718-862-7163